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The Fourier-transform method of Ewald and Knott has been successfully applied to determine the 
approximate crystal structure of triphenylene, ClaH~2. Since the molecules are asymmetric and do 
not lie at special positions in the unit cell, the treatment as developed here is more general than 
any hitherto attempted. It  is suggested that the method may be found useful in making the pre- 
liminary estimate of a crystal structure composed of planar molecules. 

Introduction 
In many organic crystals the atoms are grouped to- 
gether to form molecules of more or less accurately 
known dimensions and configuration, and it would 
evidently be advantageous to be able to treat the mole- 
cule as the unit in the preliminary stages of a crystal 
analysis when an approximate structure is being 
sought; for the position and orientation of a molecule 
of known configuration are determined by six para- 
meters only, and these alone need be handled, instead 
of the very much larger number fixing the positions of 
the individual atoms. 

The amplitude of the wave scattered by a molecule 
may be represented in reciprocal space, as Hettich 
(1935) and Ewald (1935) have pointed out. When con- 
sidered in this way, the molecular scattering factor is 
called the Fourier transform of the molecule, and Knott  
(1940) has shown how to represent the transform of a 
planar molecule as a contour map and has illustrated 
its application by taking the case of naphthalene, a 
known structure. The only instance of the application 
of this method to an unknown structure appears to 
be the work of Waser & Lu (1944) on biphenylene. No 
details are given, but, like naphthalene, the molecule has 
a centre of symmetry in the idealized model used in 
calculating the transform, which is consequently real; 
moreover, the absence of certain types of reflexion 
(e.g. hkO appears only with h = 3n) suggests immediately 
that  the molecules lie at special positions in the unit 
cell, and this simplifies the procedure. 

In this paper an account is given of the successful 
use of the Fourier-transform method to determine the 
approximate structure oftriphenylene (Klug, 1950). In 
this structure the molecules have no centre of symmetry, 
and lie in general positions in the unit cell, and it 
provides a more general example of the application of 
the method than any given previously. 

The Fourier transform of a single molecule 
I t  will be convenient at this point to summarize the 
properties of the molecular structure factor in the form 
in which they will be required. 
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We consider first the scattering factor of a single 
molecule, a typical atom of which, of atomic scattering 
factor f~, is fixed relative to a convenient origin by a 
vector r~. The amplitude scattered by the molecule is 
proportional to 

2~ri 
F(S/A) =~f~  exp -~- (S. rj), (1) 

where S - - s - s  o, s and s o being the unit vectors in the 
direction of incidence and scattering. If  we denote the 
vector S/A by 0, we may write 

F(p)--~]f~ exp 2~i(t~ .r~). (2) 
i 

We can thus plot F(t~) in the space defined by the 
vector p drawn from the origin, and from the distribu- 
tion so obtained determine the amplitude scattered by 
the molecule when it is in the position determined by the 
vectors rj; for p is determined by the conditions of 
incidence and scattering, and the amplitude scattered 
under these conditions is given by the value of F(p) at 
the extremity of the vector p. 

The vectors p and rj occur in F(p) only in the form 
of the scalar product, and it is therefore immaterial 
what co-ordinate axes we may choose relative to which 
to express their components. If, however, the molecule 
forms the unit of structure of a crystal lattice, the 
natural choice of axes will be the crystal axes for r~. and 
the corresponding reciprocal axes for ~. F(p) is then 
considered as a distribution in the reciprocal space and 
is called the Fourier transform of the molecule. A spec- 
trum is produced only when p is a vector in the reciprocal 
lattice, i.e. when the components of ~ parallel to the 
reciprocal axes are an integral number h, k, 1 of times 
the primitive translations a*, b*, c* of the reciprocal 
lattice. If  then the reciprocal lattice is supposed drawn 
with the appropriate orientation relative to the dis- 
tribution F(O), the value of F at the points of the lattice 
give the contributions of the molecule to the ordinary 
structure factor F(hkl). 

I t  should be noted that  the Fourier transform of a 
molecule is a property of the geometry of the molecule 
itself and does not primarily depend on its relation to 
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a crystal structure. In the numerical calculation of the 
transform, the crystal axes may therefore not be the 
most convenient ones to use. 

Some properties of  the transform 

The structure factor f~ is also a function of t~. We shall 
here assume it to be real, and spherically symmetrical 
about the origin. I t  will have its maximum value for 
t0 = 0, and will decrease with increasing I P 1. 

Equation (2) may be written 

F(o)=~fjcos21r(~.rj)+iZfjsin27r(p.rj).  (3) 
i i 

Neither term in (3) is t ruly periodic, because of the 
factor f~., but if we consider only molecules in which all 
the atoms are alike, and of scattering factor fi we may 
write 

F(~) 
T(O)= =7] cos 27r(t~. r j )+  i ~  sin 2~r(t~. r ~ ) ( 4 )  

f(~) j J 
=A(o)+iB(o). (5) 

Evidently t~. r~ is constant over planes in the reciprocal 
space which are perpendicular to r~. Each term in (4) 
represents a plane sinusoidal distribution in the t~-space 
with wave-length 1/I r~ I, with the wave-normal parallel 
to r~. There is one such distribution in the real part  
A(t~) of T(t~), and one in the imaginary part  B(O), for 
each atom in the molecule. By the addition of these 
wave distributions the real and imaginary parts of the 
transform can be built up. The real distribution A(O) 
is centro-symmetrical with respect to the origin, and 
the imaginary part  anti-symmetrical, since 

B(p)= - B ( - p ) .  

The modulus I T(0) I is of course centro-symmetrical. 

The transform of a planar molecule 

The distributions A(O) and B(p) are of course three- 
dimensional, and cannot easily be shown diagram- 
matically. For a plane molecule, however, they take 
a simple form. If  the origin of co-ordinates lies in the 
plane of the molecule, the wave-normals of all the con- 
stituent sinusoidal distributions lie in this plane, and 
the resultant distributions are cylindrical in character, 
and have the same value along any line normal to the 
plane of the molecule. The distributions have this 
property whatever origin may be chosen, but  the 
natural choice of an origin in the molecular plane makes 
it immediately evident. 

The transform of  triphenylene 

For the purpose of calculating the transform, the 
molecule of triphenylene was assumed to be plane, and 
to consist of regular hexagons of carbon atoms with an 
interatomic spacing 1.40 A. The molecule has no centre 
of symmetry,  so that  both real and imaginary parts 
of the transform must be used. To calculate the trans- 
form, axes ofx and y are chosen in the plane of the mole- 
cule as shown in the inset of Fig. 2, the origin being at  

the centre of the molecule. The co-ordinates of the j t h  
atom are (xj, y~, z~), but z~ is always zero. The reciprocal 
vector ~ is referred to axes coincident with those of 
x, y, z, its components being written (X, Y, Z). The 
transform of the molecule is then 

T(X, Y, Z) 

= ~  cos 21r(xiX + y j Y) + i ~  sin 21r(xjX + yj Y). (6) 
1 i 

T is independent of Z, and from (6) the real and 
imaginary parts of the transform can be calculated and 
plotted as contour diagrams giving any section per- 
pendicular to Z and parallel to the plane of the molecule. 
Such sections are shown in Fig. 2 (a) and (b). With the 
axes so chosen xj and yj are always multiples of 0.70 
and 1.21 A. respectively, and the transform is periodic 
in the X Y plane; but this is not a general property of 
such transforms ff no simple relationship between the 
individual atomic co-ordinates exists. The true trans- 
form for triphenylene in fact is not simply periodic, 
for the molecule has not the idealized regular form 
assumed in the preliminary calculations, although it 
approaches it. 

The Fourier transform of a unit cell 

The unit cell of triphenylene contains four molecules, 
related by the symmetry  elements of the space group 
P212121. The transform for the unit cell is obtained by 
adding together those of the individual molecules, each 
in its correct orientation and with its correct phase 
factor, and the resulting expression would be very 
cumbersome. We can, however, determine the transform 
applicable to those spectra for which one index is zero 
relatively easily. 

For this purpose, it is convenient to express the 
transform in terms of co-ordinates referred to the crystal 
axes and their reciprocal axes. If  (u, v, w) are the co- 
ordinates of an atom in the molecule, expressed as 
fractions of the edges of the unit cell, and (~, y, ~) are 
those of a point in the reciprocal space, referred to the 
reciprocal axes and expressed as multiples of the edges 
of the reciprocal-lattice cell, the transform may be 
written 

T(~, 9], ~)mon= Z exp 27ri(~u + ~?v + ~w ), (7) 

where the sum is over all the atoms of the molecule. 
Suppose now we wish to determine the hkO structure 

factors. We need the section of T in the plane ~= 0, i.e. 
T(~, y,0). The values of the w co-ordinates are then 
immaterial, and in considering the symmetry  of the 
cell we may think of the atoms as projected on the plane 
(001). Let us choose as origin a point at  which one of the 
twofold screw axes intersects the plane of projection, 
and let (uc, vc, We) be the fractional co-ordinates, referred 
to the crystal axes, of the centre of the molecule used as 
origin in calculating the transform. Let (u s, v~, wj) be 
the fractional co-ordinates of the j t h  atom, referred to 
axes parallel to the crystal axes but with the molecular 
centre as origin. Then (u c + uj, vc + vy, wc + wy) are the co- 
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ordinates relative to the crystal axis chosen. The screw 
axis through this origin produces a corresponding atom 
with co-ordinates - (ua + u~-), - (% + vj), (w c ÷ w~ + ½). 
The contribution of the pair of molecules related by this 
screw axis to the transform is therefore, for the plane 
~--0, 
T~(~, y, 0 ) =  2 Z cos 2.{~(uo + u~) + ~(vo + v~)} 

J 
=2Zcos27r{(~u~+~lv~)+(~uc+yvc) } (8) 

i 
= 2{,4 (~, y, 0) cos 21r(~u, + ~/%) 

- B(~, 7, 0) sin 2 . ( ~  + ~v~)} 

= 21T(~,  ~, o) Imo~. cos 2 . { ~ o + ~ V o +  a(~,y)}. 
(9) 

/-'~ "-,,, 

,o " ;:,. 

',,X (-uc:-vc) ......" 

",~ ~)f ,/** 

Fig. 1. The projection of the unit cell of triphenylene on the 
a b face showing how ig may be regarded as made up of two 
molecule pairs situated at (0, 0) and (½, ½) respectively. 

In  these equations A and B have the significance of 
equation (5), and are the real and imaginary parts of 
the transform of a single molecule, referred, however, 
to the fractional reciprocal co-ordinates; 

[ T [moL=4(A'+ B'); (10) 
and the phase angle a is given by 

2rra(~,zl)=arctan{B(~,y,O)/A(~,y,O)}. (11) 

So far as the projection on the plane (001) is concerned, 
the co-ordinates of any atom in the other pair of mole- 
cules in the unit cell are derived from those of the corre- 
sponding atom of the first pair by reversing the sign of 
v~ and % and adding ½ to both u~ and v~. This is im- 
mediately evident from Fig. 1. The reversal of the sign 
of the v co-ordinate in equations (8) and (9) is equi- 
valent to reversing the sign of y. We may therefore 
w r i t e a t  once from (9), for the contribution to the 
transform of the second molecule pair, 

T~(g,y,0) =21T(g, ~,0)Imo~. 
x cos2rr{~uc+zl%+½(~+y)÷a(~,~) }. (12) 

The total transform may be obtained by adding (9) 
and (12). 

Let us consider only the reciprocal-lattice rows 

(h,0,0) and (0,k,0). Putting ~=h and y = 0  in (9) and 
(12), and taking the sum, we obtain 

T(hOO)cen=21T(hO0) [mol. 
x [cos2n{huc+a(h, 0)} +cos2rr{h%+a(h, 0) + ½h}]. 

When h is odd this expression vanishes, which is one 
of the space-group conditions, and for h even 

T(h00)cen=41T(hO0) [moLeOs2~r{huo+a(h,O)}. (13) 

Similarly, since 

[T(0k0) Imol.=l T(0-k0)Imol. and a ( 0 , k ) = - a ( 0 , k ) ,  

T(0b0)eou=4[T(0b0) [moLCOS2rr{k%+a(0,k)}, (14) 

ff b is even, but vanishes ff/c is odd. 
An exactly similar relation will hold for T(00/)oou. 

The derivation o f  the crystal structure o f  triphenylene 
with the aid o f  the molecular transform 

We have seen how the Fourier transform of the unit cell 
of the triphenylene crystal can be built up by super- 
posing the transforms of the four molecules that  it 
contains, and how for any point in the plane ~= 0, it  
can easily be expressed in terms of the transform of a 
single molecule. The expression takes a particularly 
simple form, given in equations (13) and (14), for reci- 
procal-lattice points lying along the reciprocal axes 
themselves. 

Suppose now a certain orientation of the axes ~, ~1, 
to have been chosen relative to the molecular trans- 
forms calculated in terms of the axes X, Y. For each 
point (h, 0, 0) and (0, k, 0), along the axes ~ and 7, which 
are identical with the reciprocal axes a* and b*, we 
read the values of the real and imaginary parts, A 
and B, of the transform, and from these form the value 
° f lT lmoL-  This value o f [ T ] ,  multiplied by the 
appropriate phase factor for the point concerned, given 
in equations (13) and (14), should, for each point of the 
rows, be equal to the corresponding value of ¼1 Fobs. [ 
divided by the appropriate value of the atomic scat- 
tering factor, i.e. 2] T ]ceu- The process of deriving the 
crystal structure from the transform consists in varying 
the orientation of the reciprocal axes relative to the 
transform until agreement is reached. 

The measurements of the magnetic anisotropy of the 
triphenylene crystal (Banerjee & Guha, 1937) indicate 
that  the normals to the molecular planes are inclined 
at 51 ° to the 6 axis, and equally inclined at about 57 ° 
to the a and b axes. The inclination of the plane of the 
molecule to the crystal axes is thus known, but there is 
still a parameter determining the orientation of the 
molecule in its own plane, as well as the three parameters 
u~, %, we, fixing the centre of the molecule, to be deter- 
mined. The projection of a reciprocal net on to the 
plane of the molecule, and hence on to the X Y plane 
of its transform, is easily found. In Fig. 2 the projection 
of the reciprocal axes a* and b* is plotted on the same 
scale as the contour maps of the real and imaginary 
parts, A and B, of the Fourier transform, and with the 
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same origin. Since all h00 and 0/c0 spectra of odd index 
are absent  according to space-group requirements,  only 
reciprocal points (h, 0, 0) and (0, k, 0) with even indices 
are indicated in the figure. The reciprocal axes, the 
angle between which is of course fixed by the inclination 

appearing in the phase factors appears at first sight to 
be very  difficult. 

There are, however, several clues. I t  m a y  be seen from 
Fig. 2 that ,  owing to the symmet ry  of the real par t  of the 
transform, the values of A(200), A(400) and A(020), 

Ylb* 

~ *  ,Y,v 

Fig. 2. (a) Contour map of A(~, ~], 0), the real part of the Fourier transform of triphenylene. For clarity in numbering, some 
contour lines have been omitted from parts of the diagram. (b) Contour map of B(~, ~7, 0), the imaginary part. 

The projections of the a* and b* axes are shown in both contour maps, but only the reciprocal-lattice points of even index 
are indicated, since the spectra of odd order on these axes are in any case absent. The unit cell of the transform is indicated 
by the broken lines in (a). 

assumed for the molecular plane, must  be rotated 
relative to the transform into a position such tha t  an 
equation of the ibrm of (13) or (14) can be fulfilled for 
each lattice point. This can be done only by  trial  and 
error, and, since the real and imaginary  parts  must  be 
considered together, the problem of finding both the 
correct orientation and the correct values of u c or v c 

A(040), A(060) do not depend on the orientation of the 
axes. Only the variat ion of the imaginary  parts  need 
be considered in these cases, and unsat isfactory mole- 
cular orientations can easily be rejected. Consider, for 
example,  the point  (0,4,0). The observed value of 
¼[ T(040)Icell is 3"8 and from the contour diagram 
A ( 0 4 0 ) = - 1 - 8 5 .  Now the greatest possible value of 
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¼1 T loon obtainable t~om the transform is [ T ]mol. or 
~](A~+ B2). Hence the least value of B(040) necessary 
to account for the observed value of ~1 T lcen is given 
by ~/(3.82-1.853) =3"3. Thus, in Fig. 2 (b), the lattice 
point (0, 4, 0) must lie at a position in the contour map 
which will give a value of B greater than 3"3. 

Similar considerations applied to the spectra men- 
tioned fix the orientation of the reciprocal axes within 
fairly narrow limits. Other spectra which are par- 
ticularly useful for this purpose are those that  are of 
high order but still comparatively strong (e.g. 0.18.0 
and 12.0,0); in such cases the value of ~/(A 2 + B ~) may 
be very sensitive to slight changes in orientation. 
Furthermore, since the maximum value of A, namely 
18, is so much greater than that  of B, namely 4½, the 
orientation may in some cases be largely decided by 
considering the real part  of the transform only. 

By studying the possible variations in the values of 
~/(A2+ B 2) for the individual h00 and 0k0 spectra, the 
orientation may  be determined with some accuracy. 
The finalposition adopted is shown in Fig. 2, b* making 
an angle of about 1 ° with Y; but it should be noted that,  
owing to the trigonal symmetry of the transform, there 
are two other equivalent positions. 

The molecular parameters uc, v, have now to be 
determined. To find v~ we consider first the point 
(0,2,0). The observed value of ¼1 T(020)I¢,n is 2.8. 
From Fig. 2, A(020)=+7 .4 ,  B(020)=+1.6 ,  giving 
27ra = arc tan (1-6/7.4) = 2~r × 0.035. Then, from equation 

(14), 12.81=~/(7.42+1.62)cos27r{2vc+0.035}, 
whence 2v~+0.035=0.19, 0.31, 0.69 or 0.81, 

or v~= +0.077, -0 .114,  +0-136 or 0.326. 
In  the same way, 

¼[ T(040)[cen=3.8, A(040)=1.85, B(040)= +4.2,  
giving 
21ra=--27r×0.182 and 13.8]=4.6cos21r(4ve-0.182), 

whence we obtain 

vc= +0.069, +0'146, -0"056. 

The value of ve thus lies either near +0.07 or +0.140, 
and the former may be discarded as leading to a phy- 
sieallyimpossible structure. In any event, the ambiguity 
is decided when 0k0 spectra of higher order are con- 
sidered. The mean value of ve obtained by considering 
all relevant spectra is vc= + 0.140. 

By a similar procedure, the details of which need not 
be given, the value ue= +0.175 was obtained. The we 
parameter could not be derived very accurately, since 
only three 001 spectra, all of which are weak, appear. 
I t  appeared, however that  we was small, and lay 
between 0.02 and 0-05. The effect of slight changes in 
orientation was considered, but no improvement on 
tha t  shown in Fig. 2 and on the corresponding mole- 
cular parameters could be obtained. The molecular 
position determined in this way was completely con- 
firmed by a Fourier synthesis, the details of which are 
given elsewhere (Klug, 1950). 

Although the spread about their means of the in- 
dividual values of ue and re, obtained is about + 0-006, 
this is not unduly large when it  is considered tha t  
the transform was calculated for an idealized molecule, 
whereas it  was afterwards found that  the molecule is 
by no means regular, and that  variations of as much 
as 0.07A. from the assumed interatomic spacing of 
1-40 A. occur. A good estimate of the molecular position 
is in fact obtained, because the final values of u e and v c 
are found by taking the mean of the values obtained for 
a good number of axial reflexions. 

Discussion 

The example given in this paper suggests tha t  the 
Fourier transform method may be found useful in the 
preliminary analysis of a structure composed of planar 
molecules, especially if one or more parameters are 
known--for example, the inclination of the molecular 
plane, as in this case. I t  should, however, be noted that ,  
even had no magnetic data been available for tripheny- 
lene, the approximate inclination could have been 
determined very easily from the ratio of the short c 
spacing, 5.28A., to the usual interplanar distance, 
about 3-6A., between parallel hydrocarbon molecules. 
Once the transform of triphenylene had been drawn, 
it took only a few hours to determine the molecular posi- 
tion and orientation, and the atomic co-ordinates so de- 
rived led at once to a Fourier projection on the a b plane 
which showed quite clearly the position of the atoms. 

In  the other examples to which the method has been 
applied, naphthalene and biphenylene, the application 
of the method is simplified because the presence of a 
centre of symmetry in the molecule makes the Fourier 
transform essentially real, and the molecules lie at  
special positions. The application described in this 
paper shows tha t  it is possible to use the method for 
asymmetric molecules which are not situated at special 
positions in the unit cell. In  the ease of molecules con- 
raining an inherent centre of symmetry,  which is not 
used in building the crystal structure (e.g. pyrene, 
Robertson (1947)), the complexity of the method would 
lie between the special and general cases mentioned 
above; for, in such a case, the transform though real 
must be combined with a phase factor depending on the 
position of the molecular centre, and the equation 
corresponding to (13) would be 

¼l T(h00)[oo.= ] T(h00)ImoL cos2.huo. 
Finally, it should be noted tha t  since this work was 

completed Booth (1948, p. 35) has devised a type of 
molecular structure factor to determine the para- 
meters of translation of a molecule. The method involves 
the calculation of certain quantities A and B, which 
can be seen to be analogous to the real and imaginary 
parts of a Fourier transform. This must, however, be 
done separately for each spectrum, so tha t  it is not as 
useful as the Fourier transform in the case of planar 
molecules where contour maps can be constructed. 
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Furthermore, Booth's method presupposes a knowledge 
of the orientation which is not generally completely 
available. Since it does not involve plotting contour 
diagrams, it might, however, prove advantageous in the 
case of non-planar molecules. 

I wish to thank Prof. R. W. James for many helpful 
discussions throughout the course of the work, and 
particularly for his valued advice in the formulation of 
the theoretical part of this paper. To the South African 
Council of Scientific and Industrial Research I am 

indebted for a research grant, during the tenure of 
which this work was done. 
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The Phases and Magnitudes of  the Structure Factors* 
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Inequalities among the coefficients of a Fourier series representing the electron density in a crystal 
are derived on the basis that the series represents a positive function. The procedure is formulated 
for obtaining all inequalities which are based on this characteristic of positiveness, and some of the 
simpler ones are listed. :No symmetry properties are required for deriving the inequalities, but they 
may be readily introduced into the inequality relationships. It  is indicated that application of the 
linear transformation theory on hermitian forms may prove fruitful in future investigation. 

An extensive and fundamental system of inequalities 
exists among the coefficients of a Fourier series which 
represents a positive function. The structure factors are 
the coefficients in the Fourier-series representation of 
the positive electron density distribution function for 
crystals. I t  is the purpose of this paper to derive the 
fundamental system of inequalities among the structure 
factors and express them in a useful form.¢ 

By making use of the symmetry characteristics which 
are found in crystals and the Schwarz inequality, 
Harker & Kasper (1948) have derived certain useful 
inequalities among the structure factors. An extension 
of this work has been made by Gillis (1948), who has 
applied some additional inequalities of formal mathe- 
matical analysis. In both cases it was necessary to resort 
to symmetry characteristics and certain standard in- 
equalities in analysis. Implicit in their investigations 
though was the assumption that  their distribution 
function was positive. In recent work on the structure 
of atoms:~ we have found that the electron distribution 
about atoms is accurately determined by a limited 
amount of experimental data since the distribution 
function is positive. This characteristic of positiveness 

* Presented at  the meeting of the Crystallographic Society 
of America, Ann Arbor, Michigan, 7 April 1949. 

t A system of inequalities for the one-dimensional case has 
been found by Achyeser & Krein (1934) in their studies of the 
one-dimensional trigonometric moment  problem. 

:~ To be published (Phys .  Rev . ,  February  1950). Presented 
at  ASXRED Mooting, Columbus, Ohio, December 1948. 
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will be seen to be alone sufficient to yield a system of 
inequalities which limits the phases and magnitudes of 
the structure factors for crystals. 

Symmetry considerations are not basic to the de- 
velopment of the theory. However, it will be shown how 
symmetry relations may be introduced into the final 
results. 

Theory 

The Fourier coefficient, Fh~ z, is defined in terms of the 
electron density distribution function for a crystal, 
p(x, y, z), as follows: 

×exp[ -2n i (hx+ky+lz ) ]dxdydz ,  (1) 

where V is the volume of the unit cell. We construct from 
expression (1) useful hermitian forms which will be 
shown to be non-negative. The forms obtained from 
(1) are 

E E XhkzXh'k'VF~--h',~--k',Z--V 
hkl h ' k T  

1 

= V p(x, y, z) E E Xhk~X~'k'v 
dO J O hkl h ' kT  

1 

× e x p { - 2 n i [ ( h - h ' )  x ~  ( k - k ' )  y+  ( l - l ' )  z]}dxdydz, 
(m=1,2 . . . .  ) ,  (2) 

I2 


